Motors for Dusty & Extremely Cold Environments (MDECE) Project

Dr. Justin Scheidler

Materials & Structures Division Rotating & Drive Systems Branch

Dr. Erica Montbach

Space Flight Systems Project Office

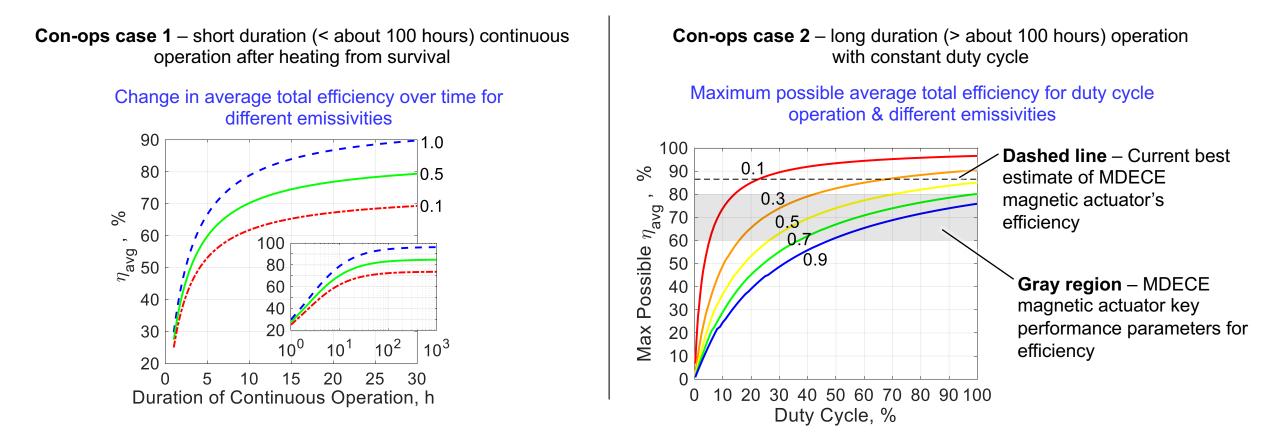
- Rotational actuators for Space mechanisms require a mechanical gearbox to meet mass, volume requirements
- Mechanical gears require lubrication to achieve satisfactory performance & life
- SOA approaches for temperatures < -60 °C:

Current Approaches	Current Penalty
Heat gearbox/motor to ≥ -60 °C & use grease lubrication	Increased complexity & mass, less power for science
Use dry film lubricant on contacting surfaces	Reductions in life design constraints on load & speed (often significant)

• This is a pervasive problem – potential for big impact

Mechanisms Affected	Environments Affected
Rover wheels	Lunar surface
Solar arrays	Lunar Gateway
Gimbals	Mars
ISRU (drills, buckets, etc)	Europa
Robot arms	Titan

National Aeronautics and Space Administration


Motors for Dusty & Extremely Cold Environments (MDECE) Project

Motivation

Quantified the impact of heating conventional, grease-lubricated actuators in lunar permanently shadowed region (PSR) using *new, intrinsic metric*

Average total efficiency = avg. of (mechanical power output) / (heater power + power input to produce torque)

1. Scheidler, J.J. et al., The Impacts of Heating Actuators in Extremely Cold Space Environments, Proc. IEEE Aerospace Conference, Big Sky, MT, 2022.

National Aeronautics and Space Administration

Motors for Dusty & Extremely Cold Environments (MDECE) Project

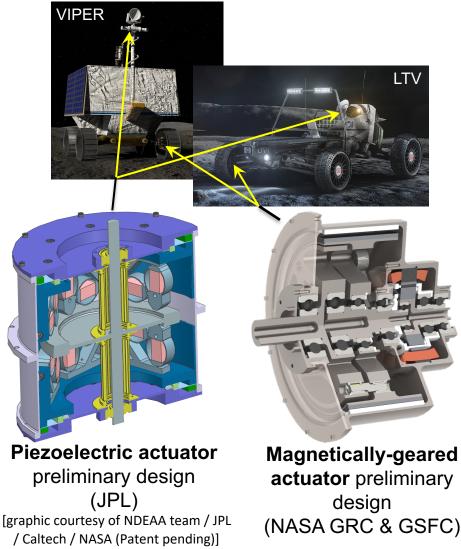
• Bearings

Dust seals

Dust mitigation tech

Out of

scope


- R&D & ground test project, Oct 2021 Sep 2024
- Goal: Develop 2 <u>unheated</u> rotational actuators that can operate for a <u>long</u> <u>duration in extreme cold</u> (ambient temperature of -243 °C (30 K))
 - Evaluate life in controlled, representative lunar dust environment
- Approach: Eliminate gear lubrication 1 actuator with non-contact gearing, 1 actuator with no gears

• Scope:

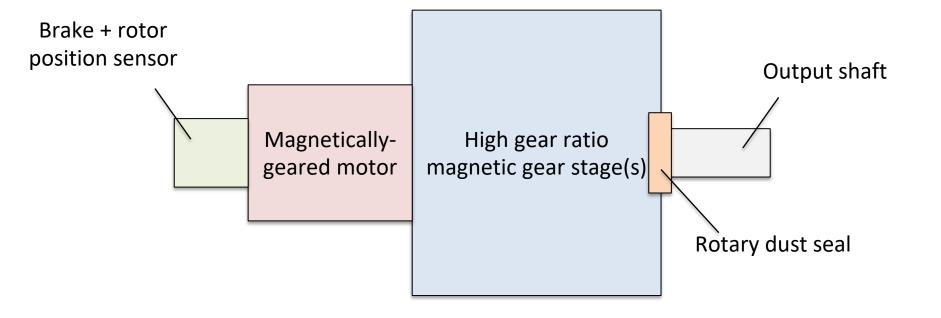
In

- Compatibility with drive/controller
- Relevant environment testing
- scope Lunar dust impact on life
 - Testing COTS actuator components
- Key Performance Parameters: Min. operating temperature dust-free life
 efficiency of magnetic actuator output resolution of piezoelectric actuator
- **Relevant environment:** Broadly applicable; focusing on lunar PSR
- Promising applications:
 - <u>Magnetic actuator</u>: rover mobility in-situ resource utilization robotic arm joints • rotors for powered flight
 - <u>Piezoelectric actuator</u>: precision pointing (e.g., laser communication)
 low power robotic arm joints

Example mechanisms for demonstrating prototypes (NASA KSC)

Why Can't We Design Away the Importance of Dust Testing?

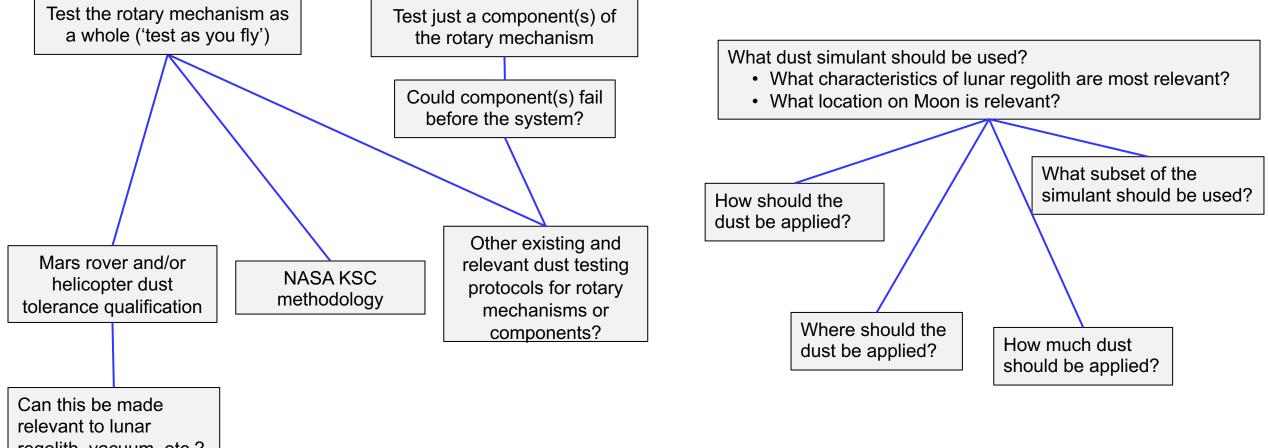
• Multiple applications of current interest will exceed or far exceed flight proven life of lunar dust seals


	Wheel drive actuator life in output revolutions		
Lunar rover	Design life	Achieved life before end of mission	
Lunar Roving Vehicle (US)	~46,700	~13,900	
Lunokhod 1 (USSR)	?	~6,600	
Lunokhod 2 (USSR)	?	~24,500	
YuTu-1 (China)	Roughly 1,100 to 15,900	~120	
YuTu-2 (China)	Roughly 1,100 to 15,900	~550 (as of Aug 2020)	

- Sealing effectiveness will improve if number of seals increased or preload on seal increased, but...
 - Seal wear rate expected to increase (life expected to decrease)
 - Seal drag torque and heat generation will increase
 - Although mass and volume increase may be acceptable, must also consider impact on reaction loads applied to mechanism or actuator
- Lower torque actuators more susceptible to increases in drag torque, although somewhat mitigated by reduced dust ingestion area
 - Current best estimates for baseline seal design of MDECE actuator:
 - Drag torque of *each* contact seal is 0.11% / 0.05% of continuous / peak output torque
 - Heat generation of *each* contact seal is 0.6% / 0.3% of continuous / peak heat load

National Aeronautics and Space Administration

MDECE Magnetic Actuator Configuration



- <u>Design objective</u>: meet life goal with minimal mass & loss
- Rotary seal effectiveness not well-quantified, but promising preliminary results from NASA testing by others in similar conditions (vacuum, cold, dust exposure)
 - Seals intended to be readily replaced if needed for actuator life test seal not in critical path.
 - Design considerations for cryogenic operation in work expected to impact interference fit specifications due to wide operating temperature range requirement.
- Shaft surface roughness & hardness requirements manageable
- Expected that internal pressure can escape through seals upon reaching vacuum environment to balance pressure

Open Questions for Actuator & Mechanism Developers

regolith, vacuum, etc.?

Rotary Actuator Testing in Lunar Simulant

<u>NASA-STD-1008</u>: Classifications and requirements for testing systems and hardware to be exposed to dust in planetary environments (9-21-2021)

- **Does** provide thorough overview of sources of dust, simulant preparation and storage
- **Does** recommend minimum set of dust simulant characteristics to consider for mechanism testing
- **Does** provide guidance on how much dust to apply on external surfaces (i.e., for system testing)
- **Does** suggest 2 methods for applying dust to an exposed surface
- Component testing guidance focused on friction and wear testing of dust-loaded grease or lubricant

<u>Additional testing guidance required in the future (perhaps a future standard) to cover Rotary Actuator</u> Testing in more detail, must include:

- Notional Indication of how much dust may infiltrate past certain types of seals
- **Recommendation** on where to apply dust
- Recommendation on how to apply dust on dry film lubricated contact surfaces that are internal to a mechanism
- **Recommendation** on how to consider unlubricated areas of concern (e.g., gap between rotating and stationary components)

National Aeronautics and Space Administration

MDECE Magnetic Actuator – Dust Simulant Selection

Specific dust requirements must be determined based on the actuators' operating regime and the location on the lunar surface.

Basis for Primary Important Lunar Simulant Requirements:

Particle Shape/Composition: Lunar dust abrasion is expected to be a potentially critical life-limiting factor for bearings and seals.

Particle Size: Dust infiltration is also a potential life-factor, simulant particle size distribution is critical for seal effectiveness and bearing life.

Magnetic Properties: The presence of strong magnetic fields in the gearbox dictate that simulant magnetic properties are important.

Electrical Charge: The presence of strong electrical fields in the motor dictate that simulant electrostatic properties are important.

MDECE's magnetic actuator's intended application and location are a water ice prospecting mission on the Moon's south pole.

National Aeronautics and Space Administration

Magnetic constituents in south pole dust

Magnetic	gnetic Con-	Rationale	
component cern		Abundance	Magnetic properties
Metallic iron (Fe)	High	0.4-0.8 wt% [CBE]	$\begin{array}{l} \mu_r \text{ 1e4 [CBE] (size \leq 30 nm)} \\ 1e4+ (size > 30 nm) \\ M_s \text{ 100\% of iron} \end{array}$
Magnetite (Fe ₃ O ₄)	Mid	[TBD]	$ μ_r ≈ 650 (size ≤ 20 nm) $ 2.5-6.5 (size > 20 nm) M_s 2.4% of iron
Hematite (αFe_2O_3)	Low	1-10 wt% not typ. at ≥ 85 °S rare on far side rare on crater floor	$\mu_r \le 1.2$ <i>M_s</i> 0.05-0.12% of iron
Ilmenite (FeTiO ₃)	Low	≤ 1 wt% [CBE]	μ _r 1.3-4.5 [CBE]
$u_{\rm r}$ = relative magnetic permeability = 1 + suscentibility			

 μ_r = relative magnetic permeability = 1 + susceptibility

 M_s = saturation magnetization

Dust Impact Assessment**

Dust Class ID	PE-L:1-500-36-2,5,6,8
<u>Working Dust</u> <u>Environment</u> :	PE = Planetary External
<u>Planetary Body</u> :	L = Lunar
Dust Loading Vector:	1 = Surface Accumulated
Particle Size Range:	500 = Max particle size (micron)
Dust Loading:	36 (mg/m²) (assumed over 10 years)
Test Categories:	2 = Abrasion/Wear 5 = Mechanism 6 = Seals 8 = Electrostatic

Preliminary selection of lunar dust simulants

Test	Simulant	Rationale
Abrasion	agglutinates (Off Planet Research (OPR) OPRH4NW30) or OPR simulant OPRH4NW30 + magnetic	 Highlands more relevant than Mare Highlands minerals all have similar hardness Higher fidelity & more relevant to south pole than typical recommendation for abrasion testing (BP-1)
Piezoelectric actuator		Abrasion test rationaleCan develop realistic electric charge
Magnetic actuator		 Abrasion test rationale State of the art for capturing magnetic properties

** Per NASA technical standard NASA-STD-1008

National Aeronautics and Space Administration

This work was funded by the Game Changing Development Program within the Space Technology Mission Directorate

Contributors:

NASA Glenn Research Center – A. D. Anderson, S. M. Darmon, A. T. Guzik, J. Hawk, P. A. Hoge, S. A. Howard, E. N. Montbach, J. J. Scheidler, E. J. Stalcup, T. F. Tallerico, and K. R. Whitling

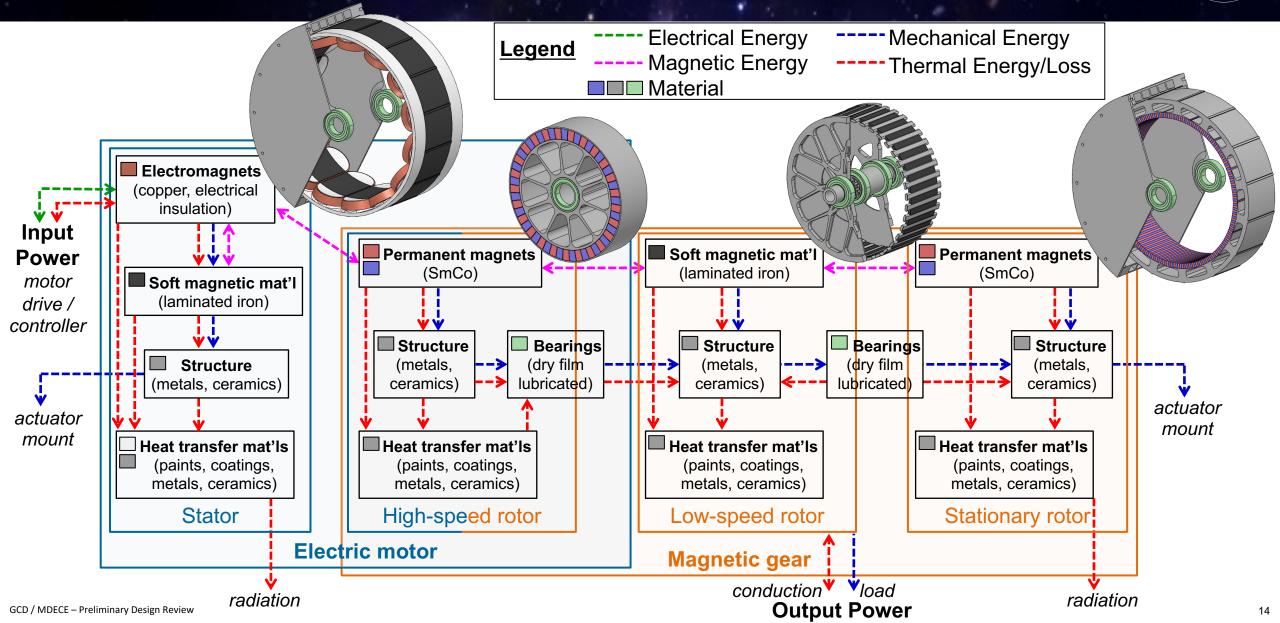
Jet Propulsion Laboratory – M. Badescu, X. Bao, Y. Bar-Cohen, H. J. Lee, S. Sherrit, N. K. Shirajian

NASA Kennedy Space Center – B. C. Buckles, C. J. Clark, M. W. Nugent, J. D. Smith

NASA Goddard Space Flight Center – Z. A. Cameron

Contact Info

Dr. Justin Scheidler ju Dr. Erica Montbach ei


justin.j.scheidler@nasa.gov erica.n.montbach@nasa.gov

THANK YOU

Concept Description – Magnetically-Geared Motor (GRC/Justin Scheidler)

